The dynamin-like GTPase DLP1 is essential for peroxisome division and is recruited to peroxisomes in part by PEX11.

نویسندگان

  • Xiaoling Li
  • Stephen J Gould
چکیده

Peroxisome division involves the conserved PEX11 peroxisomal membrane proteins and in yeast has been shown to require Vps1p, a dynamin-like protein. We show here that DLP1, the human homolog of the yeast DNM1 and VPS1 genes, plays an important role in peroxisome division in human cells. Disruption of DLP1 function by either RNA interference or overexpressing dominant negative DLP1 mutants causes a dramatic reduction in peroxisome abundance, although overexpression of functional DLP1 has no effect on peroxisome abundance. Overexpression of PEX11 induces peroxisome division in a multistep process involving elongation of preexisting peroxisomes followed by their division. We find that DLP1 is dispensable for the first phase of this process but essential for the second. Furthermore, we show that DLP1 associates with peroxisomes and that PEX11 overexpression recruits DLP1 to peroxisome membranes. However, we were unable to detect physical interaction between PEX11 and DLP1, and the stoichiometry of PEX11 and peroxisome-associated DLP1 was far less than 1:1. Based on these and other aspects, we propose that DLP1 performs an essential but transient role in peroxisome division and that PEX11 promotes peroxisome division by recruiting DLP1 to peroxisome membranes through an indirect mechanism.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mff functions with Pex11pβ and DLP1 in peroxisomal fission

PEROXISOMAL DIVISION COMPRISES THREE STEPS elongation, constriction, and fission. Translocation of dynamin-like protein 1 (DLP1), a member of the large GTPase family, from the cytosol to peroxisomes is a prerequisite for membrane fission; however, the molecular machinery for peroxisomal targeting of DLP1 remains unclear. This study investigated whether mitochondrial fission factor (Mff), which ...

متن کامل

Peroxisome elongation and constriction but not fission can occur independently of dynamin-like protein 1.

The mammalian dynamin-like protein DLP1 belongs to the dynamin family of large GTPases, which have been implicated in tubulation and fission events of cellular membranes. We have previously shown that the expression of a dominant-negative DLP1 mutant deficient in GTP hydrolysis (K38A) inhibited peroxisomal division in mammalian cells. In this study, we conducted RNA interference experiments to ...

متن کامل

The Arabidopsis chloroplast division protein DYNAMIN-RELATED PROTEIN5B also mediates peroxisome division.

Peroxisomes are highly dynamic organelles involved in various metabolic pathways. The division of peroxisomes is regulated by factors such as the PEROXIN11 (PEX11) proteins that promote peroxisome elongation and the dynamin-related proteins (DRPs) and FISSION1 (FIS1) proteins that function together to mediate organelle fission. In Arabidopsis thaliana, DRP3A/DRP3B and FIS1A (BIGYIN)/FIS1B are t...

متن کامل

The peroxin Pex34p functions with the Pex11 family of peroxisomal divisional proteins to regulate the peroxisome population in yeast

Peroxisomes are ubiquitous organelles involved in diverse metabolic processes, most notably the metabolism of lipids and the detoxification of reactive oxygen species. Peroxisomes are highly dynamic and change in size and number in response to both intra- and extracellular cues. In the yeast Saccharomyces cerevisiae, peroxisome growth and division are controlled by both the differential import ...

متن کامل

Peroxisome division and proliferation in plants.

Peroxisomes are eukaryotic organelles with crucial functions in development. Plant peroxisomes participate in various metabolic processes, some of which are co-operated by peroxisomes and other organelles, such as mitochondria and chloroplasts. Defining the complete picture of how these essential organelles divide and proliferate will be instrumental in understanding how the dynamics of peroxis...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 278 19  شماره 

صفحات  -

تاریخ انتشار 2003